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1 Integrate the following functions

1.1 a)∫
x2ex dx

Solution
Since this integral is composed of two functions, we can integrate using Integration By

Parts.

u← LIATE → v (1)∫
u dv = uv −

∫
v du (2)

Where L = Logarithmic Functions, I = Inverse Trigonometric Functions, A = Algebraic
Functions, T = Trigonometric Functions, and E = Exponential Functions. Thus

u = x2 ⇒ du = 2x dx∫
dv =

∫
ex dx⇒ v = ex

Using the Integration by Parts Formula (2)∫
x2ex dx = x2ex − 2

∫
xex dx

Using integration by parts one more time for the right integral

u = x⇒ du = dx∫
dv =

∫
ex dx⇒ v = ex

= x2ex − 2[xex −
∫

ex dx]

x2ex − 2xex + 2ex + C

1.2 b)∫
sin(x)ex dx

Solution
Again, since this integral is composed of two functions, we need to use Integration By

Parts. Using LIATE

u = sin(x)⇒ du = cos(x) dx∫
dv =

∫
ex ⇒ v = ex
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Then,∫
sin(x)ex = sin(x)ex −

∫
excos(x) dx

Using IBP one more time

u = cos(x)⇒ du = −sin(x) dx∫
dv =

∫
ex ⇒ v = ex

= sin(x)ex − [cos(x)ex −
∫
−sin(x)ex dx]

= sin(x)ex − cos(x)ex −
∫

sin(x)ex dx

Since the integral always repeats itself to the original integral, we can use algebra to solve∫
sin(x)ex = sin(x)ex − cos(x)ex −

∫
sin(x)ex dx

∫
sin(x)ex +

∫
sin(x)ex = sin(x)ex − cos(x)ex

2

∫
sin(x)ex = sin(x)ex − cos(x)ex

=
ex(sin(x)− cos(x))

2
+ C

1.3 c)∫
sin3xcos7x dx

Solution
Here we can use u-substitution

u = cos(x)

du = −sin(x) dx

dx = − 1

sin(x)
du∫

sin3(x)u7 (− 1

sin(x)
du)

⇒ −
∫

sin2(x)u7 du
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We can transform the sine term using the trigonometric identity sin2(x) = (1− cos2(x)) to
get a cosine term that we can switch to our original u-substitution.

−
∫

(1− cos2(x))u7 du

−
∫

(1− u2)u7 du

−
∫

u7 − u9 du

−u8

8
+

u10

10

Substituting back

= −cos8(x)

8
+

cos10(x)

10
+ C

1.4 d)∫
sin2(x)cos2(x) dx

Solution
Since both exponents are even, it is better to use half-angle formulas and trigonometric

identities:

cos2(x) =
cos(2x) + 1

2

sin2(x) = 1− cos2(x)

Thus∫
(1− cos2(x))cos2(x) dx∫
cos2(x)− cos4(x) dx∫
cos(2x) + 1

2
− (

cos(2x) + 1

2
)2 dx

At this point is better to breakdown the integral into smaller integrals

1

2

∫
cos(2x) dx+

1

2

∫
1 dx− 1

4

∫
(cos(2x) + 1)2 dx

Using u-substitution in the first integrand with u=2x, and expanding the last integrand we
get

sin(2x)

4
+

1

2
x− 1

4

∫
cos2(x) + 2cos(2x) + 1 dx
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Rearranging terms

sin(2x)

4
+

1

2
x− 1

4

∫
1 + 2cos(2x) + cos2(x) dx

We can easily compute the first two terms

sin(2x)

4
+

1

2
x− 1

4
x− sin(2x)

4
− 1

4

∫
cos2(x) dx

Focusing on the last integrand, we can use half-angle formulas

−1

4

∫
cos(4x) + 1

2
dx

−1

8

∫
cos(4x) dx− 1

8

∫
1 dx

− 1

32

∫
cos(u) du− 1

8
x

− 1

32
sin(4x)− 1

8
x

And now we can eliminate terms and consolidate our answer

sin(2x)

4
+

1

2
x−1

4
x− sin(2x)

4
− 1

32
sin(4x)− 1

8
x+ C

1

4
x− 1

8
x− sin(4x)

32
+ C

= −sin(4x)

32
+

1

8
x+ C

1.5 e)∫ √
25− x2 dx

Solution
For this integral we will need to use Trigonometric Substitution. For a radical

√
a2 − x2 we

can use the substitution x = asin(θ). Thus∫ √
52 − x2 dx

x = 5sin(θ)

dx = 5cos(θ)dθ
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And we can substitute∫ √
25− (5sin(θ))2 5cos(θ) dθ∫ √
25− 25sin(θ) 5cos(θ) dθ∫ √
52(1− sin2(θ)) 5cos(θ) dθ∫

5
√
(1− sin2(θ)) 5cos(θ) dθ

25

∫ √
cos2(θ) cos(θ) dθ

25

∫
cos(θ)cos(θ) dθ

25

∫
cos2(θ) dθ

Using half-angle formulas

25

∫
cos(2θ) + 1

2
dθ

⇒25

4
sin(2θ) +

25

2
θ

We can use the double-angle identity: sin(2θ) = 2sin(θ)cos(θ).

25

2
sin(θ)cos(θ) +

25

2
θ

Since our original susbtitution is based on trigonometry, we can use trigonometric
definitions to invert it (see figure 1).

Figure 1: Trigonometric Substitution Triangle
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x = 5sin(θ)

sin(θ) =
x

5
=

opposite

hypotenuse

θ = sin−1(
x

5
)

cos(θ) =

√
25− x2

5
=

adjacent

hypotenuse

And thus our final solution is

25

2
(
x

5
)(

√
25− x2

5
) +

25

2
sin−1(

x

5
)

=
x
√
25− x2

2
+

25

2
sin−1(

x

5
) + C

1.6 f)∫
x2

√
9x2 − 1

dx

Solution
First, let’s factor the 9 from the denominator∫

x2√
9(x2 − 1

9
)
dx

∫
x2

√
9
√
x2 − 1

9

dx

∫
x2

3
√

x2 − (1
3
)2

dx

And this integral will require Trigonometric Substitution. For a radical
√
x2 − a2 we can

use the substitution x = asec(θ). Thus∫
x2

3
√
x2 − (1

3
)2

dx

x =
1

3
sec(θ)

dx =
1

3
sec(θ)tan(θ) dθ
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And we can substitute∫
(1
3
sec(θ))2

3
√

(1
3
sec(θ))2 − 1

9

1

3
sec(θ)tan(θ) dθ

∫ 1
9
sec2(θ)√

9(1
9
sec2(θ)− 1

9
)

1

3
sec(θ)tan(θ) dθ

1

27

∫
sec3(θ)tan(θ)√
sec2(θ)− 1

dθ

At this point is always helpful to look at trig identities to check if we can simplify our
integrand. Here, we will use the trig identity: tan(θ) =

√
sec2(θ)− 1

1

27

∫
sec3(θ)tan(θ)

tan(θ)
dθ

1

27

∫
sec3(θ) dθ

Because of the odd exponent of the secant, it is helpful to use Integration By Parts. Let’s
also omit the 1

27
constant and we’ll bring it back later.∫

sec(θ)sec2(θ) dθ

u = sec(θ)⇒ du = sec(θ)tan(θ) dθ∫
dv =

∫
sec2(θ) dθ ⇒ v = tan(θ)

Thus∫
sec3(θ) dθ = [sec(θ)tan(θ)−

∫
sec(θ)tan2(θ) dθ]
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Using tan2(θ) = sec2(θ)− 1

= sec(θ)tan(θ)−
∫

sec(θ)(sec2(θ)− 1) dθ

= sec(θ)tan(θ)−
∫

sec3(θ)− sec(θ) dθ

= sec(θ)tan(θ)−
∫

sec3(θ) dθ +

∫
sec(θ) dθ∫

sec3(θ) dθ = sec(θ)tan(θ) + ln|sec(θ) + tan(θ)| −
∫

sec3(θ) dθ∫
sec3(θ) dθ +

∫
sec3(θ) dθ = sec(θ)tan(θ) + ln|sec(θ) + tan(θ)|

2

∫
sec3(θ) dθ = sec(θ)tan(θ) + ln|sec(θ) + tan(θ)|∫
sec3(θ) dθ =

sec(θ)tan(θ) + ln|sec(θ) + tan(θ)|
2∫

sec3(θ) dθ =
sec(θ)tan(θ)

2
+

ln|sec(θ) + tan(θ)|
2

And now we can bring back the constant

1

27

∫
sec3(θ) dθ =

1

27
[
sec(θ)tan(θ)

2
+

ln|sec(θ) + tan(θ)|
2

]

=
sec(θ)tan(θ)

54
+

ln|sec(θ) + tan(θ)|
54

Now we can use trigonometric definitions to invert out substitution (see figure 5).

Figure 2: Trigonometric Substitution Triangle
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x =
1

3
sec(θ)

sec(θ) =
3x

1
=

hypotenuse

adjacent

tan(θ) =

√
9x2 − 1

1
=

opposite

adjacent

⇒ 3x
√
9x2 − 1

54
+

ln|3x+
√
9x2 − 1|

54

And thus, our final solution is

=
x
√
9x2 − 1

18
+

ln|3x+
√
9x2 − 1|

54
+ C

1.7 g)∫
2x4 + 3x3 + 2x2 + 4

x7 + 4x5 + 4x3
dx

Solution
For this problem we will use Partial Fraction Decomposition. First, let’s factorize the

denominator as much as we can because this will simplify our process a bit.∫
P (x)

Q(x)
=

2x4 + 3x3 + 2x2 + 4

x3(x4 + 4x2 + 4)
dx

The expression x4 + 4x2 + 4 can easily be simplified to (x2 + 2)2, thus

2x4 + 3x3 + 2x2 + 4

x3(x2 + 2)2
=

A

x
+

B

x2
+

C

x3
+

Dx+ E

x2 + 2
+

Fx+G

(x2 + 2)2

2x4 + 3x3 + 2x2 + 4 = x3(x2 + 2)2[
A

x
+

B

x2
+

C

x3
+

Dx+ E

x2 + 2
+

Fx+G

(x2 + 2)2
]

2x4 + 3x3 + 2x2 + 4 = Ax2(x2 + 2)2 +Bx(x2 + 2)2 + C(x2 + 2)2 + (Dx+ E)x3(x2 + 2)2 + (Fx+G)x3

If x=0: 4 = C(2)2 which makes C = 1. With C = 1 we need to expand each part of the
expression and rearrange the terms with a common variable. This work leads us to

= x6(A+D) + x5(B + E) + x4(4A+ 1 + 2D + F ) + x3(4B + 2E +G) + x2(4A+ 4) + x(4B) + 4

And now we can relate the coefficients to the left expression

1. 0x = x(4B)⇒ B = 0

2. 2x2 = x2(A+ 4)⇒ A = −1
2

3. 0x5 = x5(B + E)⇒ E = 0
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4. 3x3 = x3(4B + 2E +G)⇒ G = 3

5. 0x6 = x6(A+D)⇒ D = 1
2

6. 2x4 = x4(4(−1
2
) + 1 + 2(1

2
) + F )⇒ F = 2

And we can plug back in these constants in our integral breakdown∫ −1
2

x
+

1

x3
+

1
2
x

x2 + 2
+

2x+ 3

(x2 + 2)2
dx∫ −1

2

x
dx+

∫
1

x3
dx+

∫ 1
2
x

x2 + 2
dx+

∫
2x+ 3

(x2 + 2)2
dx

And we can integrate each fraction separately. Our final result is

= −1

2
ln|x| − 1

2x2
+

1

4
ln|x2 + 2| − 1

x2 + 2
+

3x

(x2 + 2)2
+

3
√
2

2
tan−1(

x√
2
) + C

1.8 h)

Estimate the area under the graph in the figure by using (a) the Midpoint Rule and (b) the
Trapezoidal Rule each with n = 3, and (c) Simpson’s Rule with n = 6.

Figure 3: Area under graph

Solution
a) The Midpoint Rule is estimated using the following relation∫ a

b

f(x) dx ≈ ∆x[f(x̄1) + ...+ f(x̄i)]

Where ∆x = b−a
n

and x̄i is the midpoint of the ith sub-interval.

∆x =
b− a

n
=

6− 0

3
= 2
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Thus

Midpoint = M3 = ∆x[f(1) + f(2) + f(3)]

= 2(5 + 2 + 4)

M3 ≈ 22

b) The Trapezoidal Rule is estimated using the following relation∫ a

b

f(x) dx ≈ ∆x

2
[f(x0) + 2f(x1) + ...+ 2f(xn−1) + f(xn)]

Where ∆x = b−a
n

in this case still ∆x = 2. Thus

Trapezoid = T3 =
∆x

2
[f(0) + 2f(2) + 2f(4) + f(6)]

=
2

2
[3 + 2(4) + 2(3) + 1]

T3 ≈ 18

c) The Simpson’s Rule is estimated using the following relation∫ a

b

f(x) dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + ...+ 4f(xn−1) + f(n)]

Where ∆x = b−a
b

and n must be even. Thus, ∆x = 1

Simpson′s = S3 =
∆x

3
[f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + f(6)]

=
1

3
[3 + 4(5) + 2(4) + 4(2) + 2(3) + 4(4) + 1]

S3 ≈
20

3

2 Find the Arc Length

2.1 a)

f(x) = x2 − 3, 0 ≤ x ≤ 5

Solution
We know that if f ′ is continuous in [a, b], then the length of the curve y = f(x), a ≤ x ≤ b,

is

L =

∫ b

a

√
1 + [f ′(x)]2 dx (3)
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We take the derivative of the function

f ′(x) = 2x

Thus, the arc length integrand looks like∫ 5

0

√
1 + (2x)2 dx

∫ 5

0

√
1 + 4x2 dx

And this integration will require trigonometric substitution. For a radical
√
a2 + x2 we can

use the substitution x = atan(θ). Thus∫ √
12 + (2x)2 dx

2x = tan(θ)

x =
1

2
tan(θ)

dx =
1

2
sec2(θ)dθ

And we can substitute

1

2

∫ 5

0

√
1 + (2 ∗ 1

2
tan(θ))2sec2(θ) dθ

1

2

∫ 5

0

√
1 + tan2(θ)sec2(θ) dθ

Using the trigonometric identity: 1 + tan2(θ) = sec2(θ)

1

2

∫ 5

0

√
sec2(θ)sec2(θ) dθ

1

2

∫ 5

0

sec(θ)sec2(θ) dθ

1

2

∫ 5

0

sec3(θ) dθ

Using Integration By Parts with u = sec(θ) and
∫
v =

∫
sec2(θ) = tan(θ) we can integrate

1

2
∗ 1
2
[sec(θ)tan(θ) + ln|sec(θ) + tan(θ)|]50
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Now we can use trigonometric definitions to invert out substitution:

x =
1

2
tan(θ)

tan(θ) =
2x

1
=

opposite

adjacent
= 2x

sec(θ) =
1

cos(θ)
=

hypotenuse

adjacent
=

√
1 + 4x2

1
=
√
1 + 4x2

And thus, our final solution is

⇒1

2
∗ 1
2
[
√
1 + 4x2 2x+ ln|

√
1 + 4x2 + 2x|]50

=
1

4
[10
√
101 + ln|

√
101 + 10|]

2.2 b)

f(x) = ln(sec(x)), 0 ≤ x ≤ π

4

Solution
We repeat the same process using equation 3.

f ′(x) =
sec(x)tan(x)

sec(x)
= tan(x)

And the arc length integrand is∫ π
4

0

√
1 + tan2(x) dx∫ π

4

0

√
sec2(x) dx∫ π

4

0

sec(x) dx

= ln(|tan(x) + sec(x)|)|
π
4
0

And our final answer is

= ln(|
√
2 + 1|)
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3 Determine whether the following are convergent or

divergent

3.1 a)∫ 1

0

xln(x) dx

Solution
The most efficient way to determine if the integral converges or diverges is to take the limit
of the integral. Since the function is not continuous at x = 0 (that is (0, 1]), we can take

the limit approaching zero from the left or right. Here I will do it from the left

lim
t→0+

∫ 1

0

xln(x) dx

We can use Integration By Parts with u = x and
∫

v =
∫
ln(x)

lim
t→0+

[
x2

2
ln(x)− 1

2

∫
x dx]

lim
t→0+

[
x2

2
ln(x)− x2

4
]|1t

lim
t→0+

[−1

4
− t2

2
ln(t)− t2

4
]

−1

4
− lim

t→0+
[
t2

2
ln(t) +

t2

4
]

We can separate the terms due to linearity

−1

4
− [ lim

t→0+

t2

2
ln(t) + lim

t→0+

t2

4
]

The second limit goes to zero (by plugging-in zero). We see that the first limit is undefined
because ln(0) = undef . Thus, we can use L’Hopitals rule

1

2
lim
t→0+

d

dt
[t2ln(t)]
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We can rewrite the inside of the limit so it is easier to use L’Hopitals rule

1

2
lim
t→0+

[
d
dt
[ln(t)]
d
dt
[ 1
t2
]
]

1

2
lim
t→0+

[
1
t

− 2
t3

]

−1

2
lim
t→0+

[
t2

2
]

−1

2
lim
t→0+

[
02

2
]

⇒ 0

And the limit of the integral is

⇒ −1

4
= converges

3.2 b)

Sequence

an =
3√

n2 + 4n− n

Solution
The first step is to rationalize this sequence. Since we want to know if the sequence

converges or diverges, we need to set up the limit as n goes to infinity to observe its entire
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behavior.

lim
n→∞

3√
n2 + 4n− n

∗
√
n2 + 4n+ n√
n2 + 4n+ n

lim
n→∞

3(
√
n2 + 4n+ n)

n2 + 4n− n2

lim
n→∞

3(
√
n2 + 4n+ n)

4n

lim
n→∞

3(
√
n2

√
1 + 4

n
+ n)

4n

lim
n→∞

3(
√
n2

√
1 + 4

n
+ n)

4n

lim
n→∞

3(n
√

1 + 4
n
+ n)

4n

lim
n→∞

3n(
√

1 + 4
n
+ 1)

4n

lim
n→∞

3(
√

1 + 4
n
+ 1)

4

And we plug in infinity

lim
n→∞

3(
√

1 + 4
∞ + 1)

4

lim
n→∞

3(
√
1 + 0 + 1)

4

lim
n→∞

3(2)

4

And the answer is

⇒ 3

2
= converges

4 Determine whether the following series are

divergent or convergent. If convergent, determine

the exact value of the series.

4.1 a)
∞∑
n=1

22n+1

3n−4
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Solution
The Geometric Series theorem states that if

∑∞
n=1 ar

n−1 = a+ ar + ar2 + ... converges if
and only if, the common ratio |r| < 1 (a is a constant). Because we have an n exponent in
the denominator and numerator, it is likely we can use the Geometric Series test. We need
to rewrite the terms to check if the series is geometric and then check if the common ratio

is less than one
∞∑
n=1

22n ∗ 21

3n ∗ 3−4

∞∑
n=1

2

3−4
∗ 2

2n

3n

∞∑
n=1

2

3−4
∗ (2

2)n

3n

∞∑
n=1

2

3−4
∗ (4

3
)n

And it does fit the geometric series with a common ratio of |4
3
| > 1. Thus

|r| = |4
3
| > 1 = Diverges by the Geometric Series Test

4.2 b)
∞∑
n=3

1

n2 + 2n

Solution
Since neither numerator nor denominator have any exponent of n, we cannot perform the
Geometric Series test. Since our denominator are n terms raised to exponents, we can try
to perform the P-series test. The P-series

∑∞
n=1

1
np converges if and only if p > 1. Since the

denominator has multiple n terms, we first need to perform a Direct Comparison Test. The
DCT theorem states that if the

∑
an and

∑
bn are series with all positive terms (which is

true in this case by looking at the function), and is an ≤ bn for all n, then: if
∑

bn
converges, then

∑
an converges. We can see that

n2 + 2n > n2

Then, it is easy to see that

1

n2 + 2n
<

1

n2

Since n2 converges by the P-series test, then

1

n2 + 2n
is convergent by the DCT
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4.3 c)

an = cos(
1

n
)

Solution
There are two ways we can answer this problem. One is to simply look at the behavior of a
cosine function. Cosine functions oscillate back and forth, which already tells us that the

sequence will not converge. Algebraically, we can perform the Divergence Test. If
limn→∞ an = 0 then the sequence converges, if limn→∞ an ̸= 0 then the series diverges.

lim
n→∞

cos(
1

n
)

lim
n→∞

cos(
1

∞
)

lim
n→∞

cos(0) = 1 ̸= 0

Thus

⇒ cos(
1

n
) = Diverges by the Divergence Test

4.4 d)
∞∑
n=1

1

4n3 + 17n2 − 7n− 1
4

Solution
We can repeat the same process as b). Since

4n3 + 17n2 − 7n− 1

4
> 4n3

We can see that

1

4n3 + 17n2 − 7n− 1
4

<
1

4n3

Since 1
4n3 converges by the P-series test, then

1

4n3 + 17n2 − 7n− 1
4

is convergent by the DCT

4.5 e)

Use the Integral Test

∞∑
n=1

1

n3
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Solution
The Integral Test theorem states that: suppose f(n) = an and f(x) is positive, continuous

and decreasing on [1,∞]. Then
∑∞

n=1 an converges if
∫∞
1

f(x) dx converges.
Our function does check for being a positive, continuous and decreasing function; thus we

can perform the integral test.∫ ∞

1

1

n3
dn

lim
t→∞

∫ t

1

1

n3
dn

− lim
t→∞

1

2n2
|t1

− lim
t→∞

[
1

2t2
− 1

2
]

− lim
t→∞

[
1

∞
− 1

2
]

− lim
t→∞

[0− 1

2
]

=
1

2

Since the integral converges, so does the sequence.

Converges by the Integral Test

4.6 f)
∞∑
n=1

(−1)n−1

3 + 5n

Solution
Given that there is an n exponent in the numerator and an n term in the denominator, it is
best to use here we the Alternating Series Test. An alternating series is one of the form∑

(−1)nbn (or
∑

(−1)n+1bn), where bn < 0. If the alternating series
∑

(−1)nbn satisfies:

1. bn is decreasing and,

2. limn→∞ bn = 0

Then the series converges. First let’s check that the series is decreasing on the interval
[1,∞), for this we can take the first derivate of the function/series. Here we can focus on

bn = 1
3+5n

.

f(x) =
1

3 + 5x

f ′(x) =
−5

(3 + 5x)2
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It is easy to see that at x = 1 the function decreases; as x grows over time, the function
decreased over [1,∞). Now, let’s take the limit as n goes to infinity.

lim
n→∞

bn = lim
n→∞

1

3 + 5n
= 0

So, by the AST, the series converges.

=
(−1)n−1

3 + 5n
= Converges

4.7 g)
∞∑
n=1

2n

n!

Solution
Because of the factorial term in the denominator, it is best to use the Ratio Test here. The

Ratio Test theorem states that:

1. If limn→∞ |an+1

an
| = C < 1, then

∑
an is Absolutely Convergent.

2. If limn→∞ |an+1

an
| = C > 1 or =∞, then

∑
an diverges.

3. If limn→∞ |an+1

an
| = 1, then the test fails.

Thus

lim
n→∞
|

2n+1

(n+1)!

2n

n!

|

lim
n→∞
|(n+ 1)!

2n+1
∗ n!
2n
|

Let’s rewrite/expand to cancel out terms

lim
n→∞
|2

n ∗ 21

2n
∗ n(n− 1)(n− 2)(n− 3). . .

(n+ 1)n(n− 1)(n− 2)(n− 3). . .
|

lim
n→∞
|21 ∗ 1

(n+ 1)
|

lim
n→∞
| 2

n+ 1
|

lim
n→∞
| 2
∞
| = 0

Thus

∞∑
n=1

2n

n!
Absolutely Converges by the Ratio Test
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4.8 h)
∞∑
n=1

(
n2 + 1

2n2 + 1
)n

Solution
Since the series is raised to an nth exponent, it is best here to use the Root Test. The Root

Test theorem states that:

1. If limn→∞
n
√
|an| = C < 1, then

∑
an is Absolutely Convergent.

2. If limn→∞
n
√
|an| = C > 1 or =∞, then

∑
an diverges.

3. If limn→∞
n
√
|an| = 1, then the test fails.

Thus

lim
n→∞

n

√
|( n

2 + 1

2n2 + 1
)|n

lim
n→∞

n2 + 1

2n2 + 1

lim
n→∞

n2(1 + 1
n2 )

2n2(1 + 1
2n2 )

lim
n→∞

n2(1 + 1
∞)

2n2(1 + 1
∞)

lim
n→∞

n2(1 + 0

2n2(1 + 0

lim
n→∞

n2

2n2

=
1

2
< 1

∞∑
n=1

(
n2 + 1

2n2 + 1
)n Absolutely Converges by the Root Test

4.9 i)
∞∑
n=1

(−1)n−1

√
n

Solution
Since the denominator is raised to a power, we can use the Alternating Series Test. First,

let’s check that the function bn is decreasing

f(x) =
1√
n
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f ′(x) =
−1/2
n3/2

Which is decreasing on [1,∞). Now, let’s check if the series converges or diverges

bn =
1√
n
>

1√
n+ 1

And

lim
n→∞

1√
∞+ 1

= 0

So

∞∑
n=1

(−1)n−1

√
n

Converges by the AST

5 Find the radius and interval of convergence

5.1 a)
∞∑
n=1

(
arctann(n)

2n
+

1

n2
)xn

Solution
Let’s distribute the xn term

∞∑
n=1

arctann(n)

2n
xn +

xn

n2

By properties of addition

∞∑
n=1

arctann(n)

2n
xn +

∞∑
n=1

xn

n2

And for the first summation we can perform the root test, while the second summation we
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can perform the ratio test.

lim
n→∞

arctann(n)

2n
xn

lim
n→∞

(
arctan(n) ∗ x

2
)n

lim
n→∞

n

√
|(arctan(n) ∗ x

2
)|n

lim
n→∞
|arctan(n) ∗ x

2
|

|x| lim
n→∞
|arctan(n)

2
|

|x| lim
n→∞
|arctan(∞)

2
|

|x|∗|π/2
2
|

|x|∗|π
4
| < 1

|x ∗ π
4
| < 1

|x| < 4

π

Now for the ratio test

lim
n→∞
|

xn+1

(n+1)2

xn

n2

|

lim
n→∞
| xn+1

(n+ 1)2
∗ n

2

xn
|

lim
n→∞
| x

n ∗ x1

(n+ 1)2
∗ n

2

xn
|

lim
n→∞
| x

1 ∗ n2

(n+ 1)2
|

|x| lim
n→∞
| n2

(n+ 1)2
|

Applying L’Hopitals

|x| lim
n→∞
| 2n

2(n+ 1) ∗ 1
|

|x| lim
n→∞
| n

(n+ 1)
|

|x| ∗ |1| < 1

|x| < 1
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So the minimum radius of converge happens between [− 4
π
, 4
π
], [−1, 1]. In this case, we know

that the series converges in the latter interval. It is still possible that it converges in the
former interval; for the former interval, we would need to perform the same limit as n goes
to infinity at x = −4

π
, 4
π
and check if it converges or diverges. In this case, however, the

minimum radius of convergence is

ROC : [−1, 1]

5.2 b)

f(x) = (
1

5 + x
+

1

1− 3x
)

Solution
First we need to find a infinite series that represents this function. We know the common

power series

1

1− x
=

∞∑
n=0

xn, for |x| < 1

Now, it is helpful to rewrite the first term of the function by steps. First we factorize the 5
and x in the denominator

1

5 + x
=

1

5− (−x)
=

1

5
(

1

1− (−x
5
)
)

And we can substitute −x
5
in the power series and expand

∞∑
n=0

(−x

5
)n

∞∑
n=0

− xn

5n

∞∑
n=0

(−1)nx
n

5n

1

5
∗

∞∑
n=0

(−1)nx
n

5n

∞∑
n=0

(−1)nxn(
1

51 ∗ 5n
)

∞∑
n=0

(−1)nxn(
1

5
)n+1

Notice how we transformed the 1 in the numerator into 1n+1. Since 1 raised to any
exponent is just one; this allows us to manipulate it to accommodate for the denominator
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term 5n+1. Now we can do the same for the second term

∞∑
n=0

(3x)n

∞∑
n=0

3nxn

We can easily combine the two power series into one

∞∑
n=0

(−1)nxn(
1

5
)n+1 +

∞∑
n=0

3nxn

∞∑
n=0

(−1)nxn(
1

5
)n+1 + 3nxn

∞∑
n=0

( (−1)n(1
5
)n+1 + 3n)xn

And now we have a power series that represents the original function. To find the radius of
convergence, we can perform the ratio test separately

∞∑
n=0

( (−1)n(1
5
)n+1xn + 3nxn

∞∑
n=0

( (−1)n(1
5
)n+1xn +

∞∑
n=0

3nxn

lim
n→∞
|(−1)

n+1(1/5)n+2xn+1

(−1)n(1/5)n+1xn
| lim

n→∞
|3

n+1xn+1

3nxn
|

lim
n→∞
|(−1)

n(−1)(1/5)n(1/5)2xnx1

(−1)n(1/5)n(1/5)1xn
| lim

n→∞
|3

n31xnx1

3nxn
|

|x
nx1

xn
| lim
n→∞
|(−1)

n(−1)(1/5)n(1/5)2

(−1)n(1/5)n(1/5)1
| |x

nx1

xn
| lim
n→∞

|3
n31

3n
|

|(−1)(1/5)x| < 1 |3x| < 3

And the radii of convergence are

−5 < x < 5, and − 1 < x < 1

And the minimum radius of converge is

ROC : [−1, 1]
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6 Taylor’s Polynomial

6.1 a)

Approximate the function f(x) = e4x + sin(4x) using a Taylor Polynomial Tn(x)
Solution

Let’s recall the definition that makes up a Taylor series: if f(x) is an infinitely
differentiable function on |x− a| < R, then its Taylor series is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f”(a)

2!
(x− a)2 + . . .

The Taylor series of ex is

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . . +

xn

n!

Using u-substitution, we can just substitute the power of e; that is, let u = 4x

e4x =
∞∑
n=0

(4x)n

n!
= 1 + 4x+

(4x)2

2!
+

(4x)3

3!
+ . . . +

(4x)n

n!

The sine Taylor series is

sin(x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+ . . .

Let u = 4x

sin(4x) =
∞∑
n=0

(−1)n (4x)
2n+1

(2n+ 1)!
= 4x− (4x)3

3!
+ . . .

And now, to approximate the Taylor series using the first four terms (that is
Tn(x) = T4(x). We do not bring the sin(4x) Taylor series to n = 4 because past n = 1 the

polynomial has a degree greater than 4, thus changing the Taylor polynomial degree:

T4 = ex + sin(x)

= (1 + 4x+
(4x)2

2!
+

(4x)3

3!
) +

(4x)4

4!
) + (4x− (4x)3

3!
)

= 1 + 2(4x) +
(4x)2

2!
+

(4x)3

3!
)− (4x)3

3!
+

(4x)4

4!

= 1 + 2(4x) +
(4x)2

2!
+

(4x)4

4!

And we can expand the remaining terms

T4 ≈ 1 + 8x+ 8x2 +
32

3
x4
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6.2 b)

Centered at −1
4
, find an N large enough to guarantee the Tn(x) is within 0.1 of f(x) for all

x in [−1
2
, 0] using the original function in a).

Solution
Here we use Taylor’s Inequality: If fn+1 is continuous and |fn+1| ≤M between a and x,

then:

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1

First let’s find a Taylor series by taking the function’s nth derivatives

f(x) = e4x + sin(4x)

f ′(x) = 4e4x + 4cos(4x)

f”(x) = 42e4x − 42sin(4x)

f ′′′(x) = 43e4x − 43cos(4x)

f 4(x) = 44e4x + 44sin(4x)

...

fn(x) = 4ne4x ± 4ncos(4x)

M = |fn+1(x)| = 4n+1e4x ± 4n+1cos(4x) or sin(4x)

No matter what n is, we can see that this is an increasing function, so its maximum on the
interval −1

2
< x < 0 occurs at the right-hand point, x = 0. This gives

|fn+1(x)| = 4n+1e4x ± 4n+1cos(4x)

|fn+1(x)| = 4n+1(e4x ± cos(4x))

|fn+1(x)| = 4n+1(e0 ± cos(0))

|fn+1(x)| = 4n+1(1 + 1)

|fn+1(x)| = 4n+1 ∗ 2

And thus

|Rn(x)| = |f(x)− Tn| ≤
2 ∗ 4n+1

(n+ 1)!
|x+

1

4
|n+1 on [−1

2
, 0]

Similar to the squeeze theorem, on [−1
2
, 0] we want to ’sandwich’ the |x+ 1

4
|n+1.

|x+
1

4
| ≤ 1

4

Since

| − 1

2
+

1

4
| = | − 1

4
| ≤ 1

4
and |0 + 1

4
| = |1

4
| ≤ 1

4
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So

|x+
1

4
|n+1 ≤ (

1

4
)n+1 =

1

4n+1

Thus

|f(x)− Tn| ≤
2 ∗ 4n+1

(n+ 1)!
|x− 1

4
|n+1

|f(x)− Tn| ≤
2 ∗ 4n+1

(n+ 1)!

1

4n+1

|f(x)− Tn| ≤
2

(n+ 1)!

And we want Tn(x) within 0.1 so

2

(n+ 1)!
< 0.1 =

1

10
20

(n+ 1)!
< 1

20 < (n+ 1)!

And we test nth points to figure out which one is within 0.1. In this case,

n ≥ 3

7 Power Series Representation

7.1 a)

Find a power series centered at x = 0 which represents the following function
f(x) = (x− 1)ex−1.

Solution
We can build the power series strategically. We can start by defining the power series of ex

ex = 1 + x+
x2

2!
+

x3

3!
+ ... =

∞∑
n=0

xn

n!

We multiply times x

xex = x+ x2 +
x3

2!
+

x4

3!
+ ... =

∞∑
n=0

xn+1

n!

We multiply times e−1

xexe−1 = xex−1 =
x

e
+

x2

e
+

x3

e ∗ 2!
+

x4

e ∗ 3!
+ ... =

∞∑
n=0

xn+1

n! ∗ e
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Now to define ex−1 we can simply factorize an x term

ex−1 =
1

e
+

x

e
+

x2

e ∗ 2!
+

x3

e ∗ 3!
+ ... =

∞∑
n=0

xn

n! ∗ e

And so we have

⇒ xex−1 − ex−1

⇒
∞∑
n=0

xn+1

n! ∗ e
−

∞∑
n=0

xn

n! ∗ e

And here we are trying to combine the power series, however we have one term with xn+1

and the other term with xn. For this, we can shift the first term by one n = n− 1.

⇒
∞∑
n=1

xn+1−1

(n− 1)! ∗ e
−

∞∑
n=0

xn

n! ∗ e

⇒
∞∑
n=1

xn

(n− 1)! ∗ e
−

∞∑
n=0

xn

n! ∗ e

And now to make the second power series to be shifted by 1, we can evaluate the first term.

⇒
∞∑
n=1

xn

(n− 1)! ∗ e
−

∞∑
n=0

x0

0! ∗ e

⇒
∞∑
n=1

xn

(n− 1)! ∗ e
− 1

e
+

∞∑
n=1

xn

n! ∗ e

⇒ −1

e
+

∞∑
n=1

xn

n! ∗ e
+

∞∑
n=1

xn

(n− 1)! ∗ e

⇒ −1

e
+

∞∑
n=1

[
1

n! ∗ e
+

1

(n− 1)! ∗ e
]xn

And the power series is

⇒ −1

e
+

∞∑
n=1

[
1

n!
+

1

(n− 1)!
]e−1xn

7.2 b)

Find a power series centered at x = 0 which represents the following function
f(x) = x2sin(5x3). Find f 29(0) and f 30(0).

Solution
Again, this is helpful to do it in steps. First let’s start with the sine function

sin(x) = x− x3

3!
+

x5

5!
+ ... =

∞∑
n=0

(−1)n

(
x)2n+1(2n+ 1)!
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Substituting x = 5x3

sin(5x3) = 5x3 − (5x3)3

3!
+

(5x3)5

5!
− ... =

∞∑
n=0

(−1)n52n+1(x)6n+3

(2n+ 1)!

We multiply times x2

x2sin(5x3) = 5x5 − x2(5x3)3

3!
+

x2(5x3)5

5!
− ... =

∞∑
n=0

(−1)n52n+1(x)6n+5

(2n+ 1)!

So the power series for the function is

⇒
∞∑
n=0

(−1)n52n+1(x)6n+5

(2n+ 1)!

To find f 29(x) means we need to find the n that makes x6n+5=29, which is n = 4. For the
coefficient of xk in a power series

∑
ckx

k, the k-th derivative at 0 is given by:

fk(0) = k! ∗ ck

Plugging-in n = 4

(−1)452∗4+1x6∗4+5

(2 ∗ 4 + 1)!
=

59x29

9!

Thus, the coefficient c29 is:

c29 =
59

9!

The 29th derivative at 0 is then given by:

f 29(0) = 29! ∗ c29 = 29! ∗ 5
9

9!

For f 30(0), n = 25
6
. Since n must be an integer, there is no such n that makes 6n+ 5 = 30.
Thus, there is no x30 term in the series expansion.

f 29(0) =
59 ∗ 29!

9!
, f 30(0) = 0

7.3 c)

xy” + y′ + xy = 0, y(0) = 1, y′(0) = 1. What is the pattern for c2k and c2k+1?
Solution

This is a problem of differential equations using series. Here we need to assume that the
differential equation solutions take form of MacLaurin Series:

y =
∞∑
n=0

cnx
n
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And we take derivatives accordingly

y =
∞∑
n=0

cnx
n

y′ =
∞∑
n=1

n ∗ cn ∗ xn−1

y′′ =
∞∑
n=2

n(n− 1)cnx
n−2

And now we can multiply by the terms in the given differential equation accordingly

xy′′ = x ∗
∞∑
n=2

n(n− 1)cnx
n−2 =

∞∑
n=2

n(n− 1)cnx
n−1

xy = x ∗
∞∑
n=0

cnx
n =

∞∑
n=0

cnx
n+1

And our differential equation looks like

∞∑
n=2

n(n− 1)cnx
n−1 +

∞∑
n=1

n ∗ cn ∗ xn−1 +
∞∑
n=0

cnx
n+1 = 0

In order to combine these MacLaurin series let’s try to get a common factor of xn. Pay
attention at how we manipulate the nth terms in both the summation and its arguments.

∞∑
n+1=2

n(n− 1)cnx
n−1 +

∞∑
n+1=1

n ∗ cn ∗ xn−1 +
∞∑

n−1=0

cnx
n+1 = 0

∞∑
n+1=2

(n+ 1)(n− 1 + 1)cn+1x
n−1+1 +

∞∑
n+1=1

(n+ 1) ∗ cn+1 ∗ xn−1+1 +
∞∑

n−1=0

cn−1x
n+1−1 = 0

∞∑
n=1

(n+ 1)(n)cn+1x
n +

∞∑
n=0

(n+ 1) ∗ cn+1 ∗ xn +
∞∑
n=1

cn−1x
n = 0

Now we have a common factor of xn, however we cannot factorize just yet because the
middle summation is centered at n = 0. In order to re-center, let’s take out the first term

(that is, for this summation, plug in n = 0), yielding:

c1+
∞∑
n=1

(n+ 1)(n)cn+1x
n +

∞∑
n=1

(n+ 1)cn+1x
n +

∞∑
n=1

cn−1x
n = 0

c1+
∞∑
n=1

[(n+ 1)(n)cn+1 + (n+ 1)cn+1 + cn−1]x
n = 0

And the differential equation breaks down into

c1 = 0 and,
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(n+ 1)(n)cn+1 + (n+ 1)cn+1 + cn−1 = 0

Looking at the second system

(n+ 1)[n ∗ cn+1 + cn+1] = −cn−1

[n ∗ cn+1 + cn+1] = −
1

(n+ 1)
cn−1

cn+1(n+ 1) = − 1

(n+ 1)
cn−1

cn+1 = −
1

(n+ 1)2
cn−1

And we check the pattern for c2k values:

1. c0 = 1

2. c1 = 0

3. c1+1 = c2 = − 1
22
c0 = − 1

22

4. c3+1 = c4 = − 1
42
c2 =

1
22∗42

5. c5+1 = c5 = − 1
62
c4 = − 1

22∗42∗62

Giving us

...c2n =
(−1)n

22 ∗ 42 ∗ ... ∗ (2n)2
=

(−1)n

4n(n!)2

Also, since c1 = 0, we know that c3 = c5 = ... = c2n+1 = 0. Therefore,

y =
∞∑
n=0

cnx
n =

∞∑
n=0

(−1)n

4n(n!)2
x2n

7.4 d)

Write the DE y” + y′ = xy′ into series form centered at 1.
Solution

Let’s rewrite the DE to y′′ − xy′ + y′ = 0. Thus

y =
∞∑
n=0

cn(x− 1)n

y′ =
∞∑
n=1

ncn(x− 1)n−1

y′′ =
∞∑
n=2

n(n− 1)cn(x− 1)n−2
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⇒
∞∑
n=2

n(n− 1)cn(x− 1)n−2 − x ∗
∞∑
n=1

ncn(x− 1)n−1 +
∞∑
n=1

ncn(x− 1)n−1

∞∑
n=2

n(n− 1)cn(x− 1)n−2 − [x ∗
∞∑
n=1

ncn(x− 1)n−1 −
∞∑
n=1

ncn(x− 1)n−1]

∞∑
n=2

n(n− 1)cn(x− 1)n−2 − [(x− 1) ∗
∞∑
n=1

ncn(x− 1)n−1]

∞∑
n=2

n(n− 1)cn(x− 1)n−2 −
∞∑
n=1

ncn(x− 1)n

∞∑
n+2=2

(n+ 2)(n− 1 + 2)cn+2(x− 1)n−2+2 −
∞∑
n=1

ncn(x− 1)n

∞∑
n=0

(n+ 2)(n+ 1)cn+2(x− 1)n −
∞∑
n=1

ncn(x− 1)n

2c2+
∞∑
n=1

(n+ 2)(n+ 1)cn+2(x− 1)n −
∞∑
n=1

ncn(x− 1)n

⇒ 2c2 +
∞∑
n=1

[(n+ 2)(n+ 1)cn+2 − ncn](x− 1)n

8 Solve the initial value problem for each initial

condition (x + 1)2y′ = (1 + y)2

8.1 a)

y(0) = 1

Solution
First, let’s solve the ODE. Through separation of variables

(x+ 1)2y′ = (1 + y)2

dy

dx
∗ 1

(1 + y)2
=

1

(x+ 1)2

dy

(1 + y)2
=

dx

(x+ 1)2∫
dy

(1 + y)2
=

∫
dx

(x+ 1)2

⇒ − 1

1 + y
= − 1

1 + x
+ C
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The initial condition says that at x = 0, y = 1

− 1

1 + 1
= − 1

1 + 0
+ C

−1

2
= −1 + C

C =
1

2

Now let’s solve for y

− 1

1 + y
= − 1

1 + x
+

1

2

−1 = (− 1

1 + x
+

1

2
)(1 + y)

1 + y =
−1

−( 1
1+x
− 1

2
)

1 + y =
1

1
1+x
− 1

2

And after some algebraic manipulation, we get

y =
2 + 2x

2− (1 + x)

8.2 b)

y(0) = −1

Solution
We repeat the same process. The initial condition says that at x = 0, y = −1

− 1

1− 1
= − 1

1 + 0
+ C

−1

0
= −1 + C

But 1
0
is undefined. This means that there is no constant solution that will satisfy

y(0) = −1.

9 Second Order Non-Homogeneous Differential

Equations

9.1 a)

Find the general solution to y” + 6y′ + 9y = e−3x + x
Solution
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Let us start by finding linearly independent solutions

r2 + 6r + 9 = 0

(r + 3)2 = 0

Which is a repeated real root, which takes the form of the general solution of the
complimentary equation (yc) ay

′′ + by′ + cy = 0:

yc = C1e
−3x + C2xe

−3x

And now we need to find a particular solution. We can separate both the e−3x and x and
find two particular solutions with the undetermined coefficients method. Starting with our
first particular solution, notice how we need to multiply times x2 since xe−3x and just e−3x

are repeated terms in the homogeneous solution.

yp1 = Ae−3x

yp1 = Ax2e−3x

y′p1 = A[2xe−3x − 3x2e−3x]

y′′p1 = A[2e−3x − 12xe−3x + 9x2e−3x]

And we plug in the DE

2Ae−3x − 12Axe−3x + 9Ax2e−3x + 6A[2xe−3x − 3x2e−3x] + 9Ax2e−3x = e−3x

2Ae−3x − 12Axe−3x + 9Ax2e−3x + 12Axe−3x − 18x2e−3x + 9Ax2e−3x = e−3x

2Ae−3x = e−3x ⇒ A =
1

2

For our second particular solution

yp2 = Ax+B

y′p2 = A

y′′p2 = 0

0 + 6(A) + 9(Ax+B) = x

6A+ 9Ax+ 9B = x

9Ax = x⇒ A =
1

9

6(
1

9
) + 9B = 0

2

3
= −9B ⇒ B = − 2

27

And thus our general solution is

yg = C1e
−3x + C2xe

−3x +
1

2
x2e−3x +

1

9
x− 2

27
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9.2 b)

Find the particular solution to y” + 6y′ + 9y = −3x−3x + x
Solution

Since it is the same complimentary homogeneous equation as before, we’ll focus on the
particular solutions.

yp1 = (Ax+B)x2e−3x + C

y′p1 = Ax2e−3x + 2x(Ax+B)e−3x − 3(Ax+B)x2e−3x

y′′p1 = 2Axe−3x − 3Ax2e−3x + 2(Ax+B)e−3x + 2Axe−3x...

...−6x(Ax+B)e−3 − 3Ax2e−3x − 6x(Ax+B)e−3x + 9x2(Ax+B)e−3x

y′′p1 = 4Axe−3x − 6Ax2e−3x − 12x(Ax+B)e−3x + 2(Ax+B)e−3x + 9x2(Ax+B)e−3x

y′′p1 = 4Axe−3x − 6Ax2e−3x − 12Ax2e−3x − 12Bxe−3x + 2Axe−3x + 2Be−3x + 9Ax3e−3x + 9Bx2e−3x

y′′p1 = 9Ax3e−3x − 12Ax2e−3x + 6Axe−3x + 9Bx2e−3x − 12Bxe−3x + 2Be−3x

Plugging-in is quite large to include here, but using the same method as a) we get

A = −1

2
, B = 0

And our second particular solution is the same as a)

A =
1

9
, B = − 2

27

And thus the particular solution is

yp = −
1

2
x2e−3x − 1

9
x− 2

27

9.3 c)

Find the general form of a particular solution to
y”− 8y′ + 16y = 10x2e2xcos(3x) + 50e4xsin(5x)

Solution
Using the method of undetermined coefficients when multiple functions multiply looks as

follows

yp = (Ax2 +Bx+ C)e2xcos(3x) + (Dx2 + Ex+ F )e2xsin(3x) +Ge4xsin(5x) +He4xcos(5x)

If a cosine is involved, we must write the particular solution for both cosine and sine (even
if only one is part of the particular solution).
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10 Consider the differential equation of the form

y′ = F (y), where the graph of y′ versus y is as

follows:

Figure 4: Problem function F(y)

Sketch three solutions to the differential equation one satisfying y(0) = 6, another
satisfying y(0) = −6, the third one satisfies y(0) = 1. Determine for what initial conditions
y(0) = y0 the solutions have the property that limx→∞y(x) exists and limx→−∞y(x) exists.

Solution

Figure 5: Three solutions satisfying the initial conditions.

11 Bonus Questions

11.1 Find a general solution to the following differential
equation y′ = xln(x)−y

x

Solution
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Simplifying a bit

y′ = ln(x)− y

x

y′ +
y

x
= ln(x)

Here we use the integrating factor

µ(x) = e
∫

1
x = eln|x|

And we multiply the integrating factor

(y ∗ eln|x|)′ = eln|x| ∗ ln(x)∫
(y ∗ eln|x|)′ =

∫
eln|x| ∗ ln(x) dx

y ∗ eln|x| =
∫

eln|x| ∗ ln(x) dx

y =
1

eln|x|

∫
eln|x| ∗ ln(x) dx

y =
1

eln|x|

∫
x ∗ ln(x) dx

y =
1

eln|x|
(
x2ln(x)

2
− x2

4
+ C)

y =
1

x
(
x2ln(x)

2
− x2

4
+ C)

y =
xln(x)

2
− x

4
+

C

x

11.2 Let c0,c1,c2,... and d0, d1,d2,... be sequences of real numbers
with the following properties:

•
∑∞

n=0(−1)n
cn7

n

3n is absolutely convergent.

•
∑∞

n=0 dn is conditionally convergent.

Consider then following power series

∞∑
n=0

(n+ 1)(cn+1 + dn+1)x
n

For what values of x (if any) is the power series guaranteed
to be convergent? For what values of x (if any) is the power

series guaranteed to be divergent?
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Hint: The sum of a convergent and a divergent series is divergent.

Solution

∞∑
n=0

(n+ 1)(cn+1 + dn+1)x
n =

∞∑
n=0

cn+1nx
n +

∞∑
n=0

ndn+1x
n +

∞∑
n=0

cn+1x
n +

∞∑
n=0

dn+1x
n

For
∑∞

n=0 cn+1nx
n:

lim
n→∞

(n+ 1)cn+2x
n+1

ncn+1xn

=
cn+2

cn+1

x

Since x < 1, the series is convergent. For
∑∞

n=0 ndn+1x
n:

lim
n→∞

(n+ 1)dn+2x
n+1

ndn+1xn

=
dn+2

dn+1

x

Also since x < 1, the series is convergent. For
∑∞

n=0 cn+1x
n, we see that ≤ cn+1

7n

3n
, so it is

absolutely convergent by CT when 0 ≤ x < 1.
Lastly, for

∑∞
n=0 dn+1x

n, it is conditionally convergent when 0 ≤ x ≤ 1. Thus

[0, 1] : Convergent, x /∈ [0, 1] : Divergent

11.3 Determine the convergence or divergence of the following
infinite series:

∞∑
n=0

2

(ln(n) + 1)n

Solution

lim
n→∞

n

√
| 2

(ln(n) + 1)n
|

lim
n→∞

21/n

ln(n) + 1
= 0

The series absolutely converges by the Root Test
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11.4 Determine if the following improper integrals are
convergent or divergent. Carefully justify your answers.∫ ∞

3

cos(x) + 2
3
√
x
√
x− 2

dx

Solution

lim
t→∞

∫ t

3

cos(x) + 2
3
√
x
√
x− 2

dx

⇒ −1 ≤ cos(x) ≤ 1

⇒ 1 ≤ cos(x) ≤ 3

Thus

1
3
√
x
√
x− 2

≤ cos(x) + 2
3
√
x
√
x− 2

≤ 3
3
√
x
√
x− 2

For the left-hand fraction:

lim
x→∞
|

1
x5/6

1
3√x

√
x−2

|

We see that 1
x5/6 diverges by p-series since 5

6
< 1.

So,

cos(x) + 2
3
√
x
√
x− 2

is divergent by the LCT, SCT, and p-series.
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